Tag: 上海楼凤TL


Yupik Language Assistance Available For Early Voting In Bethel


first_imgEarly or absentee voting begins Monday, October 20th for those who want to cast their ballots before the General Elections on November 4th.Download AudioVoting officials say language assistance is available at the absentee voting location at the City Clerk’s office in Bethel. There are currently two Yup’ik proficient employees at the city office who are able to assist by explaining the ballots in Yup’ik.Another option for language assistance is for a voter to bring one person of their choice to translate the ballots and voting information for them.last_img


Gene therapy helps weak mice grow strong


first_img Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Email Sign up for our daily newsletter Get more great content like this delivered right to you! Country A virus that shuttles a therapeutic gene into cells has strengthened the muscles, improved the motor skills, and lengthened the lifespan of mice afflicted with two neuromuscular diseases. The approach could one day help people with a range of similar disorders, from muscular dystrophy to amyotrophic lateral sclerosis, or ALS.Many of these diseases involve defective neuromuscular junctions—the interface between neurons and muscle cells where brain signals tell muscles to contract. In one such disease, a form of familial limb-girdle myasthenia, people carry two defective copies of the gene called DOK7, which codes for a protein that’s needed to form such junctions. Their hip and shoulder muscles atrophy over many years, and some eventually have trouble breathing or end up in a wheelchair. Mice similarly missing a properly working Dok7 gene are severely underweight and die within a few weeks.In the new study, researchers led by molecular biologist Yuji Yamanashi of the University of Tokyo first injected young mice engineered to have defective Dok7 with a harmless virus carrying a good copy of the Dok7 gene, which is expressed only in muscle. Within about 7 weeks, the rodents recovered. Their muscle cells cranked out the DOK7 protein, and under a microscope their muscles had larger neuromuscular junctions than those of untreated mice with defective Dok7. What’s more, the mice grew to a healthy body weight and had essentially normal scores on tests of motor skills and muscle strength.center_img Click to view the privacy policy. Required fields are indicated by an asterisk (*) The next question was whether Dok7 gene therapy would help mice with a different muscle disease. The Tokyo group gave the treatment to mice with a rodent form of Emery-Dreifuss muscular dystrophy (EDMD), an inherited disease in humans involving a defect in a gene for a muscle protein that also leads to abnormal neuromuscular junctions and muscle weakness and wasting. These mice, too, lived longer, had larger neuromuscular junctions and did better on motor tests than untreated mice with the disease, the team reports online today in Science (see video showing that treated mice get up faster than untreated rodents when placed on their side).The results weren’t as dramatic as in Dok7-deficient mice—the treated EDMD mice were still scrawny and had a shortened lifespan. But the Japanese team says this is likely because the mice’s genetic defect also results in heart problems that the treatment did not address; people with EDMD receive pacemakers. Yamanashi says his group is now testing the DOK7 therapy in other diseases and in larger animals.Most gene therapy treatments for neuromuscular disease aim to correct a specific genetic defect, notes muscle disease researcher Martin Childers of the University of Washington, Seattle. Because these disorders are caused by hundreds or thousands of genetic mutations, targeting all these disorders that way could require “hundreds of gene therapies,” he says. However, Childers suggests, DOK7 therapy could work with many of them.last_img read more